
EE565:Mobile Robotics 
Lecture 7 

Welcome 

 

Dr. Ahmad Kamal Nasir 



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry  

Today’s Objectives 

• Visual Odometry 

– Camera model 

– Calibration 

• Feature detection 

– Harris corners 

–  SIFT/SURF etc. 

•  Optical Flow 

– Kanade-Lucas-Tomasi Tracker 
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Vision 

Use both eyes…at arm’s length, center target within finger OK sign Lock hand in 
position…see which eye is still aligned by closing the other. The eye with good 
alignment is your dominant eye! 
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Human Vision 

• Larger portion of our brain is used for vision 

• Retina:1000𝑚𝑚2 120mills Rods, 7mills Cones 

• Human Eye Resolution≈ 500 Megapixel 

• Data rate≈ 3 GB/sec 
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Computer Vision (Perception) is hard! 

• Perception is hard because 

– A lot of data 

– Uncertainty 

– Model estimation 

– Contextual  
information 

– Cognitive  
reasoning 
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Computer Perception Human Perception 
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Image Processing Vs. Computer Vision 

• Image processing we deals with the images 
and the outputs are also images 

– It deals with giving effects various effects to the 
image 

• Computer vision also deals with images but 
the outputs are data. 

– It deals with extraction of meaningful information 
from images 
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Computer Vision 

Automatic extraction of meaningful information 
from images and videos 
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Semantic Information Geometric Information 
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Challenges In Computer Vision 

• Viewpoint changes 

• Illumination changes 

• Object intra-class variations 

• Inherent ambiguities 
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Viewpoint changes 

Illumination changes Object intra-class variations Inherent ambiguities 
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Applications 

• Robot navigation and automotive 

• Medical imaging 

• 3D reconstruction and modeling 

• Video games and tele-operations 

• Augmented reality 

• Motion capture 

• Recognition 
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Visual Odometry 

• Camera Model 

• Calibration 

• Feature Extraction 

• Feature Tracking 

• Camera Pose 
Estimation 

• Triangulation 
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• Raw Data(Vision/Ranges) 

• Clustering(Corners/Lines) 

• Objects (Doors/Rooms) 

• Semantics(Contextual 
Information, Place 
recogniation) 
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Image Formation 

• If we place a piece of film in front of an object, 
do we get a reasonable image? 
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Why Use a Lens? 

• Ideal pinhole: less amount of light, diffraction 
Bigger pinhole: blurry image 

• Lens focuses light onto the film 
Rays passing through optical center are inert 

• All rays parallel to the optical axis converge at the 
focal point 
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Pinhole camera model 
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Perspective camera 

• For convenience, the image plane is usually 
represented in front of C such that the image 
preserves the same  
orientation (i.e. not flipped) 

• A camera does  
not measure  
distances 
 but angles! 
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Perspective Projection 

• The Camera point 𝑃𝑐 = 𝑋𝑐, 0, 𝑍𝑐  projects to 
𝑝 = 𝑥, 𝑦   onto the image plane 

• From similar triangles 

 

 

• Similarly, in the general case: 
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Scene Points into Pixels 

• To convert 𝐩, from the local image plane coordinates (𝑥, 𝑦) to the pixel 
coordinates (𝑢, 𝑣), we need to account for optical center 𝑂 = (𝑢0, 𝑣0) and 
scale factor 𝑘 for the pixel-size 

 

 

 

• Use Homogeneous Coordinates for linear mapping from 3D to 2D, by 
introducing an extra element (scale):  
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Camera Model in Homogenous Form 
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Expressed in matrix form and homogeneous coordinates 
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Perspective Effects 

• What is lost? 

 

 

 

 

 

• What is  
preserved?  
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Lens Distortion 
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• The standard model of 
radial distortion is a 
transformation from the 
ideal coordinates (𝑢, 𝑣) 
(i.e., undistorted) to the 
real observable 
coordinates (distorted)  
(𝑢𝑑 , 𝑣𝑑 )  

 
• The amount of distortion 

of the coordinates of the 
observed image is a 
nonlinear function of their 
radial distance.  
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Camera Calibration 

• Goal: to determine the intrinsic parameters of the camera model 
• The standard method consists of measuring the 3D positions of 𝑛 control 

points on a calibration object and the 2D coordinates of their image 
projections 
– n ≥ 6 non-coplanar control points on a three-dimensional calibration target 
– n ≥ 4 non-collinear control points on a planar pattern 
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Image Filtering 

• Averaging Filter 

 

• Gaussian Filter 

 

 

 

• Basic Filtering Operations 
– Convolution 

– Correlation 
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Edge Detection 
• Edge contours  

in the image  
correspond to  
important scene  
contours. 

• Ultimate goal of  
edge detection: an idealized line drawing. 

• Edges correspond to sharp changes of intensity  
• Change is measured by 1st order derivative in 1D  
• Or 2nd order derivative is zero. 
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1D Edge Detection 
• Image intensity shows an obvious change 
• Where is an edge? 
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Solution: Smoothing 
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Drawback: Increased computation. Can we do something better? 
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Derivative Theorem of Convolution 
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How to find edge rather than a maxima or minima? 
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Zero Crossing 

• Locations of Maxima/minima in 𝑠 𝑥  are 
equivalent to 𝑠 𝑥   
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2D Edge Detection 
• Find gradient of smoothed  

image in both directions 
 
 
 

 
• Discard pixels with 𝛻𝑆 (i.e. edge strength), below a certain below 
• Non-maximal suppression: identify local maxima of 𝛻𝑆  detected 

edges 
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Point Features: Combining Images 

• Detect corresponding points across images in order to align them 
– Detect the same points independently in different images (Repeatable 

detector) 
– Identify the correct correspondence of each point (Reliable and 

Unique descriptor) 

• Point features used in robot navigation, object/place recognition, 
3D reconstruction 
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Harris corner detection 
[Harris and Stephens, Alvey Vision Conference 1988] 

• How do we identify corners? 

• Key: around a corner, the  
image gradient has two or  
more dominant directions 

• Shifting a window in any direction should give a 
large change in intensity in at least 2 directions 
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Implementation 

• Two image patches of size P one centered at 
𝑥, 𝑦  and one centered at 𝑥 + Δ𝑥, 𝑦 + Δ𝑦  the 

similarity measures between them is defined by 
sum squared error 
 

     Let 𝐼𝑥 =
𝜕𝐼 𝑥,𝑦

𝜕𝑥
 and 𝐼𝑦 =

𝜕𝐼 𝑥,𝑦

𝜕𝑦
. Approximating 𝐼 𝑥 + Δ𝑥, 𝑦 + Δ𝑦  

 
 
    which results into 
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Implementation (Cont.) 

• M is the “second moment matrix”  

• Since M is symmetric with  
Eigen values 𝜆1 𝑎𝑛𝑑 𝜆2 

• The Harris detector analyses 
𝜆1 𝑎𝑛𝑑 𝜆2 to decide if we are in  
presence of a corner or not 

• Visualize M as an ellipse  
with axis-lengths determined  
by 𝜆1 𝑎𝑛𝑑 𝜆2 and orientation  
determined by R 
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Corner Response Function 

• Does the patch describe 
 a corner or not? 
– No structure: 𝜆1= 𝜆2= 0 

– 1D structure: 𝜆1≫ 𝜆2 

– 2D structure: Large 𝜆1, 𝜆2 

• Last step of Harris corner 
detector: extract local minima of the 
cornerness function (Computation of 
 𝜆1, 𝜆2 𝑖𝑠 𝑒𝑥𝑝𝑒𝑛𝑠𝑖𝑣𝑒) where 𝜅 = [0.04 − 0.15] 
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Harris Corner Detector: Workflow 
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Workflow: Compute Corner Response R 
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Workflow:Find points with large 
corner response: R> threshold  
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Workflow: Take only the points of local 
maxima of R  

09.03.2015 Dr. Ahmad Kamal Nasir 36 



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry  

Detected Points 
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Properties of Harris Corner Detector 

• Harris detector: probably the most widely 
used & known corner detector 

• The detection is invariant to 

– Rotation 

– Linear intensity changes 

• The detection is NOT invariant to 

– Scale changes 
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Scale Invariant Detection 

• Consider regions (e.g. circles) of different sizes 
around a point 

• Regions of corresponding sizes will look the 
same in both images 

 

09.03.2015 Dr. Ahmad Kamal Nasir 39 



EE565: Mobile Robotics Module 3: Inertial and Visual Odometry  

Scale Invariant Detection 

• The problem: how do we choose 
corresponding circles independentlyin each 
image? 

• Intensity average 
of region 
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Scale Invariant Detection 
• Design a function on the region (circle), which is 

“scale invariant” (the same for corresponding 
regions, even if they are at different scales) 
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SIFT Features 
[Lowe, IJCV 2004] 

• SIFT: Scale Invariant Feature Transform 
• SIFT features are reasonably invariant to changes 

in: rotation, scaling, small changes in viewpoint, 
illumination 

• Very powerful in capturing + describing 
distinctive structure, but also computationally 
demanding 

• Main SIFT stages:  
– Extract keypoints + scale  
– Assign keypoint orientation  
– Generate keypoint descriptor  
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SIFT 

• Response of LoG for corresponding regions 
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Extract keypoints + scale  

• Keypoint detection 

– Scale-space pyramid:  
subsample and blur  
original image 

– Difference of Gaussians  
(DoG) pyramid: subtract  
successive smoothed images 

– Keypoints: local extrema in  
the DoG pyramid 
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SIFT orientation and descriptor  

• Keypoint orientation (to achieve rotation invariance)  

– Sample intensities around the keypoint  

– Compute a histogram of orientations of intensity gradients  

– Keypoint orientation = histogram peak  

 

 

 

• Keypoint descriptor  

– SIFT descriptor: 128-long vector  

– Describe all gradient orientations relative to the Keypoint Orientation  

– Divide keypoint neighborhood in 4×4 regions & compute orientation 
histograms along 8 directions  

– SIFT descriptor: concatenation of all 4×4×8 (=128) values  
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Optical Flow 

• Optical flow is an approximation of the  
apparent motion of objects within an  
image.  

• Algorithms used to calculate optical flow 
 attempt to find correlations between near  
frames in a video, generating a vector field  
showing where each pixel or region in the  
original image moved to in the second image.  

• Typically the motion is represented as vectors originating or terminating at 
pixels in a digital image sequence. 

• Estimating the optical flow is useful in  
pattern recognition, computer vision, and  
other image processing applications 

• It computes the motion vectors of all pixels  
in the image (or a subset of them to be  
faster) 
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Apparent Motion 

• Apparent motion of objects on the image 
plane 

• Caution required!! 
– Consider a perfectly uniform sphere that is  

rotating but no change in the light direction 
• Optic flow is zero 

– Perfectly uniform sphere that is stationary  
but the light is changing 
• Optic flow exists 

• Aperture problem 
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Optic Flow Computation 

• Two strategies for computing motion 
– Differential Methods 

• Spatio temporal derivatives for estimation of flow at 
every position 

• Multi-scale analysis required if motion not constrained 
within a small range 
– Dense flow measurements 

– Matching Methods 
• Feature extraction(Image edges, corners) 

• Feature/Block Matching and error minimization 
– Sparse flow measurements 
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Optic Flow Computation (Cont.) 
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• Image Brightness Constancy assumption 

• Let I be the image intensity as captured by the camera 

• Using Taylor series to expand I 

 

 

 

 

• Apparent brightness of moving objects remains constant 
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Optic Flow Computation (Cont.) 
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• Image Brightness Constancy assumption 

• Apparent brightness of moving objects remains 
constant 

 

 

• The                                 are the image gradient 
while the                               are the components of 
the motion field 
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Optic Flow Constraint 
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• How to get more equations for a pixel? 

• Basic idea:  impose additional constraints 

• Most common is to assume that the flow field is smooth locally 

• One method:  pretend the pixel’s neighbors have the same (u,v) 

• If we use a 5x5 window, that gives us 25 equations per pixel! 
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Lucas-Kanade Optic Flow 
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• We now have more equations than unknowns 
 

• Solve the least squares problem 
• Minimum least squares solution (in d) is given by 

 
 
 
 

• First proposed by Lucas-Kanade in 1981 
• Summation performed over all the pixels in the 

window 
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Lucas-Kanade Optic Flow 
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• Lucas-Kanade Optic flow 

 

 

• When is the Lucas-Kanade equations solvable 

• ATA should be invertible  

• ATA should not be too small (effects of noise) 

• Eigenvalues of ATA, 1 and 2 should not be small 

• ATA should be well conditioned 

• 1/2 should not be large (1 = larger eigenvalue) 
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Improving the Lucas-Kanade method 

• When our assumptions are violated 
– Brightness constancy is not satisfied 

– The motion is not small 

– A point does not move like its neighbors 

• Iterative Lucas-Kanade Algorithm 
– Estimate velocity at each pixel by solving Lucas-

Kanade equations 

– Warp H towards I using the estimated flow field 
• use image warping techniques 

– Repeat until convergence 
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Iterative Lucas-Kanade method 
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image I image J 

Gaussian pyramid of image H Gaussian pyramid of image I 

image I image H 

run iterative L-K 

run iterative L-K 

warp & upsample 

. 

. 
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Summary 

• Visual Odometry 

– Camera model 

– Calibration 

• Feature detection 

– Harris corners 

–  SIFT/SURF etc. 

•  Optical Flow 

– Kanade-Lucas-Tomasi Tracker 
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Questions 
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