

EE565:Mobile Robotics Lecture 7

Welcome

Dr. Ahmad Kamal Nasir

Today’s Objectives

- Visual Odometry
- Camera model
- Calibration
- Feature detection
- Harris corners
- SIFT/SURF etc.
- Optical Flow
- Kanade-Lucas-Tomasi Tracker

Vision

Use both eyes...at arm' s length, center target within finger OK sign Lock hand in position...see which eye is still aligned by closing the other. The eye with good alignment is your dominant eye!

Human Vision

- Larger portion of our brain is used for vision
- Retina: $1000 \mathrm{~mm}^{2} 120 \mathrm{mills}$ Rods, 7 mills Cones
- Human Eye Resolution ≈ 500 Megapixel
- Data rate $\approx 3 \mathrm{~GB} / \mathrm{sec}$

4

Computer Vision (Perception) is hard!

- Perception is hard because
- A lot of data
- Uncertainty
- Model estimation
- Contextual information
- Cognitive reasoning

Image Processing Vs. Computer Vision

- Image processing we deals with the images and the outputs are also images
- It deals with giving effects various effects to the image
- Computer vision also deals with images but the outputs are data.
- It deals with extraction of meaningful information from images

Computer Vision

Automatic extraction of meaningful information from images and videos

Semantic Information

Geometric Information

Challenges In Computer Vision

- Viewpoint changes
- Illumination changes
- Object intra-class variations
- Inherent ambiguities

Viewpoint changes

Inherent ambiguities 09.03.2015

Object intra-class variations

Illumination changes

Applications

- Robot navigation and automotive
- Medical imaging
- 3D reconstruction and modeling
- Video games and tele-operations
- Augmented reality
- Motion capture
- Recognition

Visual Odometry

- Camera Model
- Calibration
- Feature Extraction
- Feature Tracking
- Camera Pose Estimation
- Raw Data(Vision/Ranges)
- Clustering(Corners/Lines)
- Objects (Doors/Rooms)
- Semantics(Contextual Information, Place recogniation)
- Triangulation

Image Formation

- If we place a piece of film in front of an object, do we get a reasonable image?

object
Photoreceptive surface

Why Use a Lens?

- Ideal pinhole: less amount of light, diffraction Bigger pinhole: blurry image
- Lens focuses light onto the film Rays passing through optical center are inert
- All rays parallel to the optical axis converge at the focal point

Pinhole camera model

$$
\frac{h^{\prime}}{h}=\frac{f}{z} \Rightarrow h^{\prime}=\frac{f}{z} h
$$

Perspective camera

- For convenience, the image plane is usually represented in front of C such that the image preserves the same orientation (i.e. not flipped) $\quad z_{c}=$ optical axis
- A camera does not measure distances $o=$ principal point ${ }^{*}$ but angles!

Perspective Projection

- The Camera point $P_{c}=\left(X_{c}, 0, Z_{c}\right)$ projects to $p=(x, y)$ onto the image plane
- From similar triangles

$$
\frac{x}{f}=\frac{X_{c}}{Z_{c}} \Rightarrow x=\frac{f X_{c}}{Z_{c}} \quad 乌^{X_{c}} Z_{c}
$$

- Similarly, in the general case:

$$
\mathbf{P}_{\mathbf{C}}=\left(X_{C}, 0, Z_{C}\right)^{\mathrm{T}}
$$

$$
\frac{y}{f}=\frac{Y_{c}}{Z_{c}} \Rightarrow y=\frac{f Y_{c}}{Z_{c}}
$$

Scene pointsinto pixeis

- To convert \mathbf{p}, from the local image plane coordinates (x, y) to the pixel coordinates (u, v), we need to account for optical center $O=(u 0, v 0)$ and scale factor k for the pixel-size

$$
\begin{aligned}
& u=u_{0}+k x \Rightarrow u_{0}+k \frac{f x_{C}}{z_{C}} \\
& v=v_{0}+k y \Rightarrow v_{0}+k \frac{f Y_{C}}{z_{C}}
\end{aligned}
$$

- Use Homogeneous Coordinates for linear mapping from 3D to 2D, by introducing an extra element (scale):

Camera Model in Homogenous Form

$$
\begin{aligned}
& u=u_{0}+k x \Rightarrow u_{0}+k \frac{f x_{C}}{z_{C}} \\
& v=v_{0}+k y \Rightarrow v_{0}+k \frac{f Y_{C}}{z_{C}}
\end{aligned}
$$

Expressed in matrix form and homogeneous coordinates

$$
\left[\begin{array}{c}
\lambda u \\
\lambda v \\
\lambda
\end{array}\right]=\left[\begin{array}{ccc}
k f & 0 & u_{0} \\
0 & k f & v_{0} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]=K\left[\begin{array}{c}
X_{c} \\
Y_{c} \\
Z_{c}
\end{array}\right]
$$

17

Perspective Effects

- What is lost?

- What is preserved?

Lens Distortion

- The standard model of radial distortion is a transformation from the ideal coordinates (u, v) (i.e., undistorted) to the real observable coordinates (distorted) ($u d$, vd)
- The amount of distortion of the coordinates of the observed image is a nonlinear function of their radial distance.
$\left[\begin{array}{l}u_{d} \\ v_{d}\end{array}\right]=\left(1+k_{1} r^{2}\right)\left[\begin{array}{l}u-u_{0} \\ v-v_{0}\end{array}\right]+\left[\begin{array}{l}u_{0} \\ v_{0}\end{array}\right]$
$r^{2}=\left(u-u_{0}\right)^{2}+\left(v-v_{0}\right)^{2}$

No distortion

Barrel distortion

Pincushion

Camera Calibration

- Goal: to determine the intrinsic parameters of the camera model
- The standard method consists of measuring the 3D positions of n control points on a calibration object and the 2D coordinates of their image projections
- $n \geq 6$ non-coplanar control points on a three-dimensional calibration target
- $n \geq 4$ non-collinear control points on a planar pattern

In áe Filtering

- Averaging Filter

$$
J(x, y)=\frac{\sum_{(, v) S_{0}} I(r, c)}{(2 M+1)(2 N+1)}
$$

- Gaussian Filter

$$
G(x)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

$$
\mu=0
$$

σ : controls the amount of smoothing

- Basic Filtering Operations

- Convolution

$$
J(x)=F * I(x)=\sum_{i=-N}^{N} F(i) I(x-i)
$$

- Correlation

$$
J(x)=F \circ I(x)=\sum_{i=-N}^{N} F(i) I(x+i)
$$

Edge Detection

- Edge contours in the image correspond to important scene contours.
- Ultimate goal of edge detection: an idealized line drawing.
- Edges correspond to sharp changes of intensity
- Change is measured by 1st order derivative in 1D
- Or 2nd order derivative is zero.

1D Edge Detection

- Image intensity shows an obvious change
- Where is an edge?

Solution: Smoothing

Sigma $=50$

Drawback: Increased computation. Can we do something better?

Derivative Theorem of Convolution

$$
s^{\prime}(x)=\frac{d}{d x}\left(G_{\sigma}(x) * I(x)\right)=G_{\sigma}^{\prime}(x) * I(x)
$$

This saves us one operation: $I(x)$

$$
G_{\sigma}^{\prime}(x)=\frac{d}{d x} G_{\sigma}(x)
$$

$$
s^{\prime}(x)=G_{\sigma}^{\prime}(x) * I(x)
$$

How to find edge rather than a maxima or minima?

Zero Crossing

- Locations of Maxima/minima in $\dot{s}(x)$ are equivalent to $\ddot{s}(x)$

2D Edge Detection

- Find gradient of smoothed image in both directions

$$
\nabla S=\nabla\left(G_{\sigma} * I\right)=\left[\begin{array}{l}
\frac{\partial\left(G_{\sigma} * I\right)}{\partial x} \\
\frac{\partial\left(G_{\sigma} * I\right)}{\partial y}
\end{array}\right]=\left[\begin{array}{l}
\frac{\partial G_{\sigma}}{\partial x} * I \\
\frac{\partial G_{\sigma}}{\partial y} * I
\end{array}\right]=\left[\begin{array}{c}
G_{\sigma}^{\prime}(x) G_{\sigma}(y) * I \\
G_{\sigma}(x) G_{\sigma}^{\prime}(y) * I
\end{array}\right]
$$

- Discard pixels with $|\nabla S|$ (i.e. edge strength), below a certain below
- Non-maximal suppression: identify local maxima of $|\nabla S|$ detected edges

Point Features: Combining Images

- Detect corresponding points across images in order to align them
- Detect the same points independently in different images (Repeatable detector)
- Identify the correct correspondence of each point (Reliable and Unique descriptor)
- Point features used in robot navigation, object/place recognition, 3D reconstruction

Harris corner detection

[Harris and Stephens, Alvey Vision Conference 1988]

- How do we identify corners?
- Key: around a corner, the image gradient has two or more dominant directions

- Shifting a window in any direction should give a large change in intensity in at least 2 directions

"corner":
significant change in all directions

Implementation

- Two image patches of size P one centered at (x, y) and one centered at $(x+\Delta x, y+\Delta y)$ the similarity measures between them is defined by sum squared error

$$
\operatorname{SSD}(\Delta x, \Delta y)=\sum_{x, y \in P}(I(x, y)-I(x+\Delta x, y+\Delta y))^{2}
$$

Let $I_{x}=\frac{\partial I(x, y)}{\partial x}$ and $I_{y}=\frac{\partial I(x, y)}{\partial y}$. Approximating $I(x+\Delta x, y+\Delta y)$

$$
I(x+\Delta x, y+\Delta y) \approx I(x, y)+I_{x}(x, y) \Delta x+I_{y}(x, y) \Delta y
$$

which results into
$\left.\operatorname{SSD}(\Delta x, \Delta y) \approx \sum\left(I_{x}(x, y) \Delta x+I_{y}(x, y) \Delta y\right)\right)^{2} \approx\left[\begin{array}{ll}\Delta x & \Delta y\end{array}\right] M\left[\begin{array}{l}\Delta x \\ \Delta y\end{array}\right]$

Implementation (Cont.)

- \mathbf{M} is the "second moment matrix" $\quad\left[\begin{array}{ll}\Delta x & \Delta y\end{array}\right] M$
- Since \mathbf{M} is symmetric with Eigen values λ_{1} and λ_{2}
- The Harris detector analyses λ_{1} and λ_{2} to decide if we are in $M=R^{-1}\left[\begin{array}{cc}\lambda_{1} & 0 \\ 0 & \lambda_{2}\end{array}\right] R$ presence of a corner or not
- Visualize \mathbf{M} as an ellipse with axis-lengths determined by λ_{1} and λ_{2} and orientation determined by \mathbf{R}

Corner Response Function

- Does the patch describe a corner or not?
- No structure: $\lambda_{1}=\lambda_{2}=0$
- 1D structure: $\lambda_{1}>\lambda_{2}$
- 2D structure: Large λ_{1}, λ_{2}
- Last step of Harris corner
 cornerness function (Computation of λ_{1}, λ_{2} is expensive) where $\kappa=[0.04-0.15]$

$$
C=\lambda_{1} \lambda_{2}-\kappa\left(\lambda_{1}+\lambda_{2}\right)^{2}=\operatorname{det}(M)-\kappa \cdot \operatorname{trace}^{2}(M)
$$

Harris Corner Detector: Workflow

Workflow: Compute Corner Response R

Workflow:Find points with large corner response: $R>$ threshold

Workflow: Take only the points of local maxima of R

Detected Points

Properties of Harris Corner Detector

- Harris detector: probably the most widely used \& known corner detectı
- The detection is invariant to

- Rotation
- Linear intensity changes
- The detection is NOT invariant to
- Scale changes

Scale Invariant Detection

- Consider regions (e.g. circles) of different sizes around a point
- Regions of corresponding sizes will look the same in both images

Scale Invariant Detection

- The problem: how do we choose corresponding circles independentlyin each image?
- Intensity average of region

Scale Invariant Detection

- Design a function on the region (circle), which is "scale invariant" (the same for corresponding regions, even if they are at different scales)

Kernels:
$D o G=G(x, y, k \sigma)-G(x, y, \sigma)$
(Difference of Gaussians)
where Gaussian

$$
G(x, y, \sigma)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{x^{2}+y^{2}}{2 \sigma^{2}}}
$$

SIFT Features

[Lowe, IJCV 2004]

- SIFT: Scale Invariant Feature Transform
- SIFT features are reasonably invariant to changes in: rotation, scaling, small changes in viewpoint, illumination
- Very powerful in capturing + describing distinctive structure, but also computationally demanding
- Main SIFT stages:
- Extract keypoints + scale
- Assign keypoint orientation
- Generate keypoint descriptor

SIFT

- Response of LoG for corresponding regions

Extract keypoints + scale

Blur

- Keypoint detection
- Scale-space pyramid: subsample and blur original image
- Difference of Gaussians (DoG) pyramid: subtract successive smoothed image
- Keypoints: local extrema in the DoG pyramid

$$
\leftarrow \mathrm{DoG} \rightarrow
$$

SIFT orientation and descriptor

- Keypoint orientation (to achieve rotation invariance)
- Sample intensities around the keypoint
- Compute a histogram of orientations of intensity gradients
- Keypoint orientation = histogram peak

Image gradients

- Keypoint descriptor
- SIFT descriptor: 128-long vector
- Describe all gradient orientations relative to the Keypoint Orientat
- Divide keypoint neighborhood in 4×4 regions \& compute orientatio histograms along 8 directions
- SIFT descriptor: concatenation of all $4 \times 4 \times 8$ (=128) values

Keypoint descriptor

OpticalFIOM

- Optical flow is an approximation of the apparent motion of objects within an image.
- Algorithms used to calculate optical flow attempt to find correlations between near frames in a video, generating a vector field showing where each pixel or region in the original image moved to in the second image.

- Typically the motion is represented as vectors originating or terminating at pixels in a digital image sequence.
- Estimating the optical flow is useful in pattern recognition, computer vision, and other image processing applications
- It computes the motion vectors of all pixels in the image (or a subset of them to be faster)

Apparent Motion

- Apparent motion of objects on the image plane
- Caution required!!
- Consider a perfectly uniform sphere that is rotating but no change in the light direction
- Optic flow is zero
- Perfectly uniform sphere that is stationary but the light is changing
- Optic flow exists
- Aperture problem

Optic Flow Computation

- Two strategies for computing motion
- Differential Methods
- Spatio temporal derivatives for estimation of flow at every position
- Multi-scale analysis required if motion not constrained within a small range
- Dense flow measurements
- Matching Methods
- Feature extraction(Image edges, corners)
- Feature/Block Matching and error minimization
- Sparse flow measurements

Optic Flow Computation (Cont.)

- Image Brightness Constancy assumption
- Let I be the image intensity as captured by the camera
- Using Taylor series to expand I

$$
\begin{aligned}
& I(x+\Delta x, y+\Delta y, t+\Delta t)=I(x, y, t)+\frac{\partial I}{\partial x} \Delta x+\frac{\partial I}{\partial y} \Delta y+\frac{\partial I}{\partial t} \Delta t \\
& \underset{\Delta t \rightarrow 0}{L t} \frac{I(x+\Delta x, y+\Delta y, t+\Delta t)-I(x, y, t)}{\Delta t}=\underset{\Delta t \rightarrow 0}{L t} \frac{\partial I}{\partial x} \frac{\Delta x}{\Delta t}+\frac{\partial I}{\partial y} \frac{\Delta y}{\Delta t}+\frac{\partial I}{\partial t}
\end{aligned}
$$

- Apparent brightness of moving objects remains constant

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=\frac{d I}{d t}=0
$$

Optic Flow Computation (Cont.)

- Image Brightness Constancy assumption
- Apparent brightness of moving objects remains constant

$$
\frac{\partial I}{\partial x} \frac{d x}{d t}+\frac{\partial I}{\partial y} \frac{d y}{d t}+\frac{\partial I}{\partial t}=0
$$

- The $(\partial I / \partial x, \partial I / \partial y)=\nabla I$ are the image gradient while the $(d x / d t, d y / d t)=\mathbf{v}$ are the components of the motion field

$$
(\nabla I)^{T} \mathbf{v}+I_{t}=0
$$

Optic Flow Constraint

- How to get more equations for a pixel?
- Basic idea: impose additional constraints
- Most common is to assume that the flow field is smooth locally
- One method: pretend the pixel's neighbors have the same (u, v)
- If we use a 5×5 window, that gives us 25 equations per pixel!

$$
\begin{gathered}
\nabla I\left(\mathbf{p}_{i}\right) \cdot\left[\begin{array}{ll}
u & v
\end{array}\right]+I_{t}\left(\mathbf{p}_{i}\right)=0 \\
{\left[\begin{array}{cc}
I_{x}\left(\mathbf{p}_{1}\right) & I_{y}\left(\mathbf{p}_{1}\right) \\
I_{x}\left(\mathbf{p}_{2}\right) & I_{y}\left(\mathbf{p}_{2}\right) \\
\vdots & \vdots \\
I_{x}\left(\mathbf{p}_{25}\right) & I_{y}\left(\mathbf{p}_{25}\right)
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{c}
I_{t}\left(\mathbf{p}_{1}\right) \\
I_{t}\left(\mathbf{p}_{2}\right) \\
\vdots \\
I_{t}\left(\mathbf{p}_{25}\right)
\end{array}\right]} \\
A_{25 \times 2} d_{2 \times 1}=b_{25 \times 1}
\end{gathered}
$$

Lucas-Kanade Optic Flow

- We now have more equations than unknowns

$$
A_{25 \times 2} d_{2 \times 1}=b_{25 \times 1} \Rightarrow \min \|A d-b\|
$$

- Solve the least squares problem
- Minimum least squares solution (in d) is given by

$$
\left.\begin{array}{rl}
& \left(A^{T} A\right)_{2 \times 2} d_{2 \times 1}=\left(A^{T}\right)_{2 \times 25} b_{25 \times 1} \\
{\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{c}
u \\
v
\end{array}\right]=-\left[\sum_{\sum} I_{x} I_{t}\right.} \\
I_{y} I_{t}
\end{array}\right]
$$

- First proposed by Lucas-Kanade in 1981
- Summation performed over all the pixels in the window

Lucas-Kanade Optic Flow

- Lucas-Kanade Optic flow

$$
\left[\begin{array}{ll}
\sum I_{x} I_{x} & \sum I_{x} I_{y} \\
\sum I_{y} I_{x} & \sum I_{y} I_{y}
\end{array}\right]\left[\begin{array}{l}
u \\
v
\end{array}\right]=-\left[\begin{array}{l}
\sum I_{x} I_{t} \\
\sum I_{y} I_{t}
\end{array}\right]
$$

- When is the Lucas-Kanade equations solvable
- $A^{T} A$ should be invertible
- $A^{T} A$ should not be too small (effects of noise)
- Eigenvalues of $A^{\top} A, \lambda_{1}$ and λ_{2} should not be small
- $A^{\top} A$ should be well conditioned
- $\lambda_{1} / \lambda_{2}$ should not be large ($\lambda_{1}=$ larger eigenvalue)

Improving the Lucas-Kanade method

- When our assumptions are violated
- Brightness constancy is not satisfied
- The motion is not small
- A point does not move like its neighbors
- Iterative Lucas-Kanade Algorithm
- Estimate velocity at each pixel by solving LucasKanade equations
- Warp H towards I using the estimated flow field
- use image warping techniques
- Repeat until convergence

Iterative Lucas-Kanade method

Gaussian pyramid of image \mathbf{H}
Gaussian pyramid of image I

Summary

- Visual Odometry
- Camera model
- Calibration
- Feature detection
- Harris corners
- SIFT/SURF etc.
- Optical Flow
- Kanade-Lucas-Tomasi Tracker

Questions

